cancel
Showing results for 
Search instead for 
Did you mean: 

Intro Chem Benchmark Quizzes

Author
Author
0 1 1,193

Like most professors, my traditional grading scheme looks something like this:

AssessmentPoints
Unit Exams (4)400 pts.
Lab:

200 pts.

Homework:

100 pts.

Final Exam

200 pts.

The problem with this classic approach is that it is too easy for students to miss foundational skills.  Consider an example from a non-majors intro course:  A student struggles with unit conversions – and performs poorly on that part of one exam.  This gap causes him to also struggle with stoichiometry later in the course.  But he does well on the qualitative portions, and is diligent with his homework and lab.  Ultimately, he gets enough partial credit to pass the class with a C.  But he still can’t convert between units.  And at some point in his career, this gap will hurt him.

So instead, let’s begin with a question:  “What should every student who passes this class be able to do?” 

To address this issue, I introduced benchmark quizzes in my organic classes in the fall of 2016 (I wrote about these here and here).   After exceptional results, I’m adapting the strategy to my intro chem classes this semester.

First, I designed 10 key learning benchmarks.  Throughout the semester, I am giving 10 quizzes – one for each benchmark.  The quizzes are pass-fail, with no partial credit.  However, the students will have three attempts to pass each benchmark.   Further, the quizzes are tethered to the student’s homework grade.  In order to “unlock” their homework grade, they must pass 6 of the 10 benchmarks.  The quizzes are very direct, and students have an example quiz available to them beforehand. 

Here are my benchmarks:

BenchmarkDescription
1Convert between units, including metric prefixes.  Relate density, mass, and volume.
2Determine the number of protons, neutrons, and electrons in an atom.  Write symbols for atomic number and mass number.
3Write electron configurations for atoms.  Identify valence configurations.
4Identify ions and charges by name.  Correctly write the formulas for ionic compounds.  Correctly name ionic and binary covalent compounds.
5Balance chemical equations
6Solve mole-to-mole and gram-to-gram stoichiometry problems. 
7Solve stoichiometry problems using fuel value or reaction enthalpy.
8Draw Lewis structures for covalent molecules and ions.  Identify the electronic geometry around a central atom.
9Use the ideal gas law to solve for P,V,n, or T.
10Relate grams, moles, volume, and molarity for solutions.

I plan to administer these quizzes at the beginning of each lab period.   Students who have not passed previous quizzes can re-take the earlier quizzes at the same time.  Here are two examples of the sample quizzes I shared with the students.

 

234643_pastedImage_12.png

 

Implementing this comes with some logistical challenges:  I have both morning and evening classes, with a little over 200 students total.  However, by making the quizzes pass-fail, I remove the need to mark up the quizzes or agonize over partial credit.  Passes go in one pile, fails in another.  I think I can move through them quickly.

I’m looking forward to giving the first benchmarks this week.  I’ll update as the semester progresses.

1 Comment
Migrated Account

I'm looking forward to hearing how this works out in terms of the logistics of how you manage this in the classroom as well as the student opinions of it.

About the Author
Kevin Revell received his bachelor's degree from the University of New Orleans in 1995, then his Master's Degree in Organic Chemistry from Iowa State in 2000. After several very formative years working in the pharmaceutical industry, he decided to go into education, and from 2002-2006 he taught chemistry at Southeastern University in Lakeland, FL. Following completion of his Ph.D. from the University of South Florida in 2006, Kevin joined the faculty at Murray State University in Murray, KY. Kevin's research interests include organic synthesis and functional organic materials. He loves to teach, and is increasingly interested in science education in flipped and online class settings. He and his wife Jennifer have 3 kids, and they stay busy between family, church, school, and playing basketball in the driveway.