-
About
Our Story
back- Our Mission
- Our Leadershio
- Accessibility
- Careers
- Diversity, Equity, Inclusion
- Learning Science
- Sustainability
Our Solutions
back
-
Community
Community
back- Newsroom
- Discussions
- Webinars on Demand
- Digital Community
- The Institute at Macmillan Learning
- English Community
- Psychology Community
- History Community
- Communication Community
- College Success Community
- Economics Community
- Institutional Solutions Community
- Nutrition Community
- Lab Solutions Community
- STEM Community
- Newsroom
- Macmillan Community
- :
- STEM Community
- :
- STEM Blog
STEM Blog
Options
- Mark all as New
- Mark all as Read
- Float this item to the top
- Subscribe
- Bookmark
- Subscribe to RSS Feed
STEM Blog
Showing articles with label General Chemistry.
Show all articles


Member
03-26-2020
06:56 AM
Are you suddenly taking your General Chemistry course online because of the coronavirus? I just wanted to remind everyone that I developed daily (MWF) worksheets for General Chemistry I and II. These are available free from my website. You will need a password, which you can request by emailing me (information below). The worksheets were developed for a flipped class, but you don't have to flip your class in order to use them. The materials include: PDFs of all worksheets, editable files so you can customize the worksheets, and other goodies. The URL for the worksheets is http://johnosterhout.com/worksheets/ For my discussion of classroom flipping: http://johnosterhout.com/flipped-general-chemistry/ To get a password, email me at: JohnOsterhout<at>JohnOsterhout<dot>com. Please include a URL to you at your institution so I can verify you are a teaching professional.
... View more
Labels
-
Chemistry
-
General Chemistry
-
Intro & Prep Chemistry
1
0
2,027


Member
12-07-2018
12:54 PM
It's a beautiful day in the land of Flipped Chemistry. The students arrive with bright eyes and inquiring minds. They've done the reading, achieved a basic mastery of the concepts, and are now ready to polish their newly-won knowledge in their groups. I usually wake up right at that point. When I first flipped my General Chemistry class, I assigned reading and hoped for the best. I had assigned reading when I was lecturing and found that almost none of the students actually did the reading, but hope springs eternal. After all, this was the new, improved, flipped General Chemistry class. Surely the students will do the reading. Nope. Most of the the students arrived with zero preparation, zilch, nada, nothing, goose egg, squat. Here we are doing the worksheet: (Student) What's this here? (Me) That's the first thing in the reading and it's right there in bold in the book in front of you. Arrrrgh! (That was me, again. Although I do try not to say that last part out loud...) My class evolved over the next few years. Now I use online homework to elicit engagement with the material before the students arrive in class. My flipping scheme goes like this: 1) reading assignment, 2) online homework, (in class the next day) 3) group quiz on the reading assignment/homework, 4) worksheet. Repeat until we run out of semester. In my mind, the students do the reading then attempt the homework, going back to the book as needed when they work the problems. Ha! In reality, they almost universally skip the reading and dive right in to the homework. I know this from direct reports. The students tell me right out that they go straight for the homework. I've seen them in action. They open the homework, read the problem, fire up the online textbook, and scroll rapidly until an equation appears that has potential. Then they try to plug and chug. If that fails they scroll to the next equation. The process is very utilitarian. It cuts out most of the time wasted, you know, thinking. A shame, really. Is it worth having the homework at all? The first that happens in my class is a group quiz. There are usually seven problems, five from the reading/homework and two from the previous worksheet. I overhear a lot of conversations that start with "There was one like this on the homework last night." So, yeah, the homework is worthwhile. It engenders engagement in the material even if it isn't exactly the kind of engagement I was hoping for. I know that many flipped classes use videos for an introduction to the material. My experience is that student hate the long ones (45+ minutes) and will only use the short ones (six or so minutes) as a last resort. Some classes make the videos mandantory. Many of my colleagues report that enforcement is a problem. In some cases, it is possible to monitor who has opened the video but not how much of it was watched. Of course it is not possible to tell if the brain was on while the video was playing. I have talked with colleagues who are using systems in which you can post questions during the videos that have to be answered before the video can continue. Giving points for these questions motivates the students to participate and, possibly, even learn something. I am interested in what you do to engage the students and, for that matter, in how you flip. I've developed a questionnaire that I've sent to all the people who got the password for my worksheets. The returns have been interesting. I hope to post about this in the future. If you would like to participate, download the flipping questionnaire and email your answers to me at JohnOsterhout<at>JohnOsterhout<dot>com.
... View more
Labels
-
Chemistry
-
General Chemistry
0
0
2,063


Member
11-06-2018
10:05 AM
In a post last May, "What's Your Style". I invited members of this community to answer questions about their flipping style with the promise that I would summarize the results at a later date. About the same time, I sent an email to everyone who had requested a password for my worksheets (available free here) and included a questionnaire that could be filled out and returned. I sent out about one hundred fifty questionnaires and got four replies. In this post I summarize the results of five responses (the aforementioned four plus me). Questionnaire for Your Flipped Chemistry Class or Program Which chemistry classes are you flipping? Four of the respondents were flipping General Chemistry, one was also flipping a high school honors class and one was flipping a one-semester GOB (General, Organic, and Biochemistry) class for pre-nursing students. What got you interested in flipping? All respondents cited improving student success and student engagement. What is your typical class room size? The responses ranged from 15 (high school) to 200-250 (the pre-nursing GOB course). The average class section size for the college students was 47 with a range from 23 to 90. If your institution has multiple sections of chemistry what percentage of the students overall are in flipped sections? The high school class was taught in a situation were all the classes were online, so 100% of the sections were flipped. The pre-nursing GOB class was a single section, so also 100%. In the General Chemistry classes 11-30% of the sections were flipped. In my case, I choose to flip while the remain professors teaching the General chemistry sections did not. I am assuming that this situation applies to the other professors in this survey. Are you using videos? Three respondents reported using videos in their classes. Please describe videos. One respondent inherited videos from a predecessor which were 45-60 minutes each. The respondents two sections made their own videos. In one case the videos were 5-10 minutes in length and in the other the videos were mostly in the 4-6 minute range. If you are requiring the students to view videos, how do you enforce this requirement? Of the three respondents that used videos, two had no way to enforce their viewing, instead relying on the principle that without the videos, the next day's in-class activities would be difficult. In one case, the respondent used PlayPosit software to overlay questions during the videos that the student had to answer in order to proceed through the video. Those questions amounted to 5% of the course grade. What do you ask the students to do before coming to class? Two respondents required reading and videos. One required videos and taking notes. One required reading and online homework then gave a quiz the next morning. One required only the reading and gave a quiz in the morning. Are you using online homework? If so, which system are you using? All five respondents report using online homework. Interestingly, five different systems were used: McGraw-Hill Connect, Pearson Mastering Chemistry, MacMillan Sapling, Norton SmartWork, and self-written homework delivered as a .pdf file through Canvas. Please describe the nature of the homework exercises. In three cases the respondents use homework in the traditional way, at the end of weeks, chapters or sections. The reported homework exercises vary from 10 to 30 question. I give homework daily, before the students come to class, to encourage engagement with the material. The professor of the nursing class, who is dealing with 200+ students in a section, uses Sapling to provide the in-class exercises. The exercises are 20-35 questions and any unworked problems become homework due the following Monday. What do you typically do in class? Three respondents do worksheets in class, but use different approached: One does worksheets in groups. One does a short quiz and a "mini-lecture" before the worksheet and did not report whether the students are working in groups. I give a group quiz before the students do their worksheet in groups. The online class uses Adobe Connect to engage in an online synchronous discussion. The large pre-nursing class uses Sapling to provide in-class exercises with unworked problems becoming homework. It was an oversight that I did not ask explicitly about group work. I'll modify the flipping survey to include such a question. Do you have any data comparing before and after flipping? Four respondents say no or not yet. The fifth reports seeing a shift in grades toward more As and fewer DFWs. What is your personal impression of how flipping is working? Respondents: 1) "...students have commented that they like being "active" during class rather than listening to me drone on... and on... and on." 2) Online: "We have limited face-to-face time (even that is video conferenced) so this is the most effective way to engage with students, correct misconceptions, demonstrate value, and guide applications." 3) "It seems to be working very well, the one section I’ve flipped is doing significantly better than the other sections." 4) I like it and won’t go back to traditional lecture. There was an initial resistance among students who thought “teaching = lecturing = learning” but showing the grade changes has helped. Students expect my class to be flipped due to increased institutional memory. 5) "I am the only professor using a flipped classroom. My sections almost always have the highest averages on the common exams and the American Chemical Society final." Any special insights about flipping your class? Two respondents answered this question: 1) With large classes and no TA support, a colleague and I started an intern program where students get credit for serving as interns in the class to help with questions. It’s a win-win-win situation. The students get extra help in the classroom from near peers and often share things with them that they wouldn’t with me, the interns get experience in communicating with many different people and reinforcing their own knowledge, and I get much-needed help in the classroom as well as feedback from the interns. My class is 99% pre-nursing students and most of my interns are as well. Students have to earn high grades in the course to serve as interns so it’s a recognition of their work. Additionally, the interns that are already in nursing school can share their experiences with the pre-nursing students. 2) The better students thrive in the flipped classroom. The less-motivated students are immediately out of their comfort zone. It is easy for them to fall into the "lecture equals teaching" trap and conclude that I don't teach. I combat this by explaining early on about increased learning and better long-term results using the method. I also emphasize how much help is available and how much that I, personally, will provide. Is there anything else you want to share about your flipping effort? Three respondents answered this question: 1) One challenge seem to be getting the students to watch the videos and take notes ahead of time (at this point they all seem to be doing that). Another is the disparate levels of ability coming in. However, this seems to be taking care of itself as the better prepared are being very generous in helping the less prepared students. 2) So much work and ongoing effort but so worth it! 3) Flipping isn't a magic bullet, but it works better than the alternatives. Summary There isn't one path to flipping your classroom. Here are my takeaways: Be kind. Be supportive. Be sure your students know that you are on their side and that there is lots of help available. Before the students come to class put some class credit on the line to encourage them to engage the material. In class, also have class credit on the line to encourage engagement. I have quizzes at the beginning of class every day. This encourages the students to pay attention to the reading assignments and homework from the day before. *Have the student work in groups, but give them credit individually. Have an exercise such as additional homework or worksheet questions from the previous worksheet to reinforce learning. Don't wait. Flip your class now! Big thanks to the respondents: Kyle Beran, then at The University of Texas at the Permian Basin, now at Angelo State University, Nick DeMello, Joe Caddell, Yosemite Community College District, and Allison Soult, University of Kentucky. May your students thrive. If you would like to participate, download the questionnaire here, fill it out, and email it back to me at johnosterhout<at>johnosterhout<dot>com. If I get 10-20 more responses, I'll consider updating this post.
... View more
Labels
-
Chemistry
-
General Chemistry
0
0
1,707
%20(1).png)
danesterline
Migrated Account
05-14-2018
07:40 AM
After reading about flipped classrooms and attending an NSF-sponsored cCWCS workshop (Chemistry Collaborations, Workshops & Communities of Scholars) June 20-23 2016, I decided to try out flipping my organic chemistry lecture. My class meets for lecture every Monday, Wednesday, and Friday for 50 minutes. I decided to try out flipping my organic class on Fridays only as an experiment during the fall semester of 2016. First I had to become comfortable with recording my lectures. After investigating several software programs, I settled on the use of Debut Video Capture. Several other software programs were just as good, but Debut was simple to use and easily recorded my computer screen and my voice very well. An additional incentive was a free 3-month trial followed by a one-time fee of $19.99 for use of the software. I’ve used this software for two years now and find no reason to switch. I show PowerPoint slides on half of the screen and Paint software on the other side. With the Paint software, I can draw anything necessary, or I can pre-copy and paste items before recording. These recorded lectures are posted a week in advance by downloading them onto YouTube and providing the URL to my students. Sometimes I either collect a copy of their notes or quiz them to provide incentive for watching the online videos. During class on Fridays, we work on problems related to the online lecture. I have introduced a variety of activities into Fridays including worksheets, mini-quizzes, Kahoot online quizzes, old exam reviews, individual problems that they answer and explain on the whiteboard, etc... One of my favorite activities involves predicting pka values. I bring in individual slips of paper with one organic structure on each. Students are given a slip of paper with an organic acid or base, then they have to compare to their neighbor’s structure and rank them based on relative acidity. Then each group of two students compared their ranking to another group of two students. We then have time to review the results and talk about inherent problems with predicting relative pka values. Friday lectures are now fun! They are energetic, real active learning takes place, students sharing their ideas is the focus, not the professor. I can use Friday’s for pre- and post-exam reviews, for class-cancellation make-ups, for a more detailed review of complex topics, etc... I sometimes bring in a bag of cheap gifts for students to compete for. I truly believe I am a better teacher because of the flipped classroom concept.
... View more
Labels
-
Chemistry
-
General Chemistry
-
Intro & Prep Chemistry
-
Organic Chemistry
2
0
2,094


Member
05-03-2018
03:47 AM
It's fall. It's Monday morning. The semester is fresh. The sleepy faces in front of you are staring up with trepidation, with hope, or with quiet expectancy. For most of them it is their very first college class. Guess what? It's flipped. What do you tell them? Hello class. Welcome to <name of class here>. I am <your name here> and I am your instructor for the semester. We will be using a flipped classroom. This means that I will not be lecturing. You will be introduced to the material by reading assignments and on line homework. In class, we will have quizzes and do worksheets in groups. Before we get into specifics, I suppose you are wondering why I am doing the class this way. The short answer is because it works. Studies have shown that students, you, learn better by doing worksheets and talking about the material than by listening to me sing and dance at the front of the class. My own experience is that my sections, the flipped sections, usually do better on the exams and alway do better on the comprehensive final exam than the sections where the professors lecture. Why does flipping work? Spending time working problems and talking about it with other students helps you learn better than me telling you a bunch of stuff and letting you figure out how to work the problems on your own. Also, there is the aspect of repetition. Who has a favorite song? Do you know all the words to the song? Did you know all the words to the song after you heard it for the first time? No, of course not, it took six or seven times hearing the song before you got all the words down. In this flipped class, I'm going to give you several opportunities to think about the material, which means several opportunities to learn. The opportunities are: The reading The on line homework The group quiz at the beginning of class A group worksheet Homework problems that repeat the previous worksheets ideas. Quiz problems from the previous worksheet So I can give you six opportunities to learn the important material before you sit down to cram for the tests. Then, when it comes time to cram, you will find that you already know a lot of the stuff. Big win for you. Does this work? If you were weightlifter, how would you prepare for a meet? Would you do nothing until the night before then go to the gym and pump weights all night long? If you did that, would you expect to win? If you were a weightlifter, you would lift every day, gradually increasing your weight and skills until the day of the meet. I want you to be preparing for your exams the same way, a little at a time, every day, until it is time to study for the exams. Then, your study is really a tune up and not a marathon effort to learn every single thing for the first time. You might have noticed that this class is about you learning, not about me putting on a show. My job here is not to be a talking head in front of the class, but to guide you through the course and to explain the ideas to you when you get stuck. Why not just explain the ideas to everyone all at once? Everyone learns at a different rate. At some point, the group that you are working with will be stuck on a certain idea or problem. You need help. You ask me. When you ask me, you want to know the answer right then. You are receptive to the answer and when I help you with it, it will stick with you better. A group that is proceeding a little more slowly, would not be ready for the answer at the same time. So I help you when you ask and I don't care if I answer the same question multiple times, I will help you when you are ready. If you need extra help, I have office hours Monday through Thursday 1:00-2:00 pm. If you don't want to come in individually, I have tutorials Monday and Wednesday 5:00-6:00 pm. I will work problems from the worksheets, the homework, or explain ideas that may be troubling you. If your class or work schedule won't let you come to my scheduled office hours, then send me an email and I'll set up a special time to see you. I will sit with you as long as it takes. The class is about you learning. I'm here to help. College is all about learning how to learn. Each of you must find your own set of tools that will help you learn. There are the learning opportunities built in to the class, there are my office hours, and my tutorials. What else can you do to help yourself? Here are some ideas (See also What Students Do to Help Themselves😞 This course has a Special Instruction tutor, <insert name here>, who has posted hours, usually about six per week. The tutor center in the library has a chemistry tutor <insert name here> who is available about ten hours per week. The worksheets have links to videos when I can find suitable ones. The videos are from the on line homework, from Khan academy, or from random sources if they are good. Your standard search engines can help you find explanations. The American Chemistry Study guide is a good source of problems and exercises. The textbook has a study guide at the end of each chapter and problems at the end of the chapters, half of which are answered. There is no lack of help for you in this course. The first homework is due at 6:00 am before the next class. The class schedule and the assignment sheet for the next class are posted on Blackboard. See you in class.
... View more
Labels
-
Chemistry
-
General Chemistry
0
0
2,870


Member
12-08-2017
03:53 AM
In my flipped general chemistry class we start off with a group quiz and continue with a worksheet, also performed in a group. The nature of the quizzes and the worksheets are important, sure, but so are the nature of the groups. This post is about handling the groups. When I first started flipping, I was teaching a class of 80 students, which in my small chemistry department at a small state university is considered “large”. I was in a stepped classroom, with fixed tables that would seat four students. At the start of the class, I used the rows for groups. The groups were essentially assigned by however the students arranged themselves. The groups were enriched for groups of two or three friends that were coming to class together. After the first exam, I had the bright idea to make groups that consisted of a student from each quartile of the class. So each group would have a good student, two middle students and a student from the bottom quartile of the class. At the time, I was giving each group a single worksheet and one person was in charge of filling it out. I did this mostly to cut down on the grading time. The room was a glorious roar of activity as the students chewed their way through the worksheets. Bt the end of the semester, I had realized that only the best groups were making it to the end of the worksheets. For most of the class, this left significant swaths of information uncovered. I decided to give each students their own worksheet and require them to turn the worksheets in completed by the next class period. The roar of the classroom diminished by a factor of ten. I soon realized what had been going on. When the groups only had a single worksheet, only the most motivated student would work. The other three would talk about football, deer hunting, or whatever until time ran out. When everyone had their own worksheet, everybody had a stake, and the frivolous talk went away. Lesson learned. After that year, I was able to move into a smaller classroom, one that held about thirty-five students. For our small state school, this is a “normal” class size. I decided to assigned the groups by test score so that some groups were made up of the top-scoring students and some were of the poorest scoring students. The department had been talking about instituting a placement exam for the freshman chemistry students to allow us to screen out the totally unprepared and assign the less-prepared students to our non-majors chemistry class. I decided use a variation on that them, start the students off with a first-day quiz, and use that to do the initial assignments. The first-day quiz contained some math problems, some simple chemistry problems, and a logic problem. I used the scores to arrange the groups. The flaw? There was little correlation between the first day quiz scores and ultimate (or even immediate) performance in the course. The quiz can measure basic skills, but it can't measure gumption. See Brand Tenn's post, Developing Grit. Of course, I didn't realize this until after the first couple of exams. What to do? I started to rearrange the groups after the first exam, using the exam scores to make up the groups. The advantage of this was that I could get all the top students together and they could advance as fast and as far as they could. Having the poorer-performing students together isn't an entirely bad thing. They quickly discover that there isn't one “good” student who will do all the work. Sometimes these middle groups turn into learning machines as the students help each other. The other advantage of identifying the poorest performing students is that I know who they are and I can give them more attention in class. There are some problems with using the first exam to guide group formation. One is that quite often the results on the first exam stem from prior knowledge. The students are running on their high school chemistry and aren't doing any work. When these students run out of high school savvy, the course, which had been easy, is suddenly hard. Then they have to discover a new work ethnic, one that contains actual study. Some do, some don't. So the first exam isn't a good predictor, either. One can rearrange the groups after every exam. Students, of course, hate this. Once they get used a group they are loathe to change. However, they do quickly settle down into their new groups. One might even consider this valuable experience in “teamwork”, which the state is always in a tizzy about. After several years of coping with groups, here is what I am doing now. I still give a first-day quiz. I use it only to see if there are any students who can't do any math (see my recent post, It's That Chemistry Algebra, where I found a student who couldn't solve X – 2 = 0) and to lament the generally sorry preparation of students in math and chemistry. Now, I initially arrange the groups by major. I lump the pre-professional students together with the honors students and form as many groups as I can. I find that by using the major as the guiding principle, I wind up with groups that internally have similar motivations. The pre-professional students are motivated by grades. The chemistry and biology majors sometimes show a little interest in the subject material. Most of the rest of the students don't want to be in the class, they are there because their major requires it. They are motivated by survival. This initial arrangement of groups by major works better than the other methods I've tried, but I'm still looking! Other group caveats: groups that are all men don't usually work. The guys tacitly or explicitly decide that it isn't cool to be too interested in this academic stuff and so spend the whole class pushing their worksheets around the table trying to look busy while they shoot the bull. Three men in a group doesn't usually work either unless the woman is unusually motivated or outgoing. Groups with 2+ women, even groups of entirely women seem to work fine. Groups can be derailed by the disgruntled student. I always get one or more students who are very unhappy with the flipped classroom. After all, I don't teach. (They equate lecturing with teaching.) An unhappy, vocal student can poison a group, sometimes even an entire class. I try to head this off in the beginning by explaining the ideas behind flipping and citing the success of the flipped classrooms compared to the non-flipped classes in our department. I have not tried to micromanage the groups. That is, rearrange the groups as we go along depending upon the skills, motivations, and personalities of the individuals. Unfortunately it seems that by the time I can get a good feeling the individual qualities of the students in the class, the semester is over. Occasionally, I find a smart, motivated student who can actually explain things to his or her co-conspirators. In the vernacular, we call these teachers and I wish I had one per group.
... View more
Labels
-
Chemistry
-
General Chemistry
2
2
3,438


Member
11-07-2017
04:20 AM
A few semesters back, a student sent an email to one of my faculty explaining that "I'm really good at algebra, it's just that chemistry algebra that gets me." I had always interpreted that statement as a frustration with the problem-solving nature of freshman chemistry. Maybe the student was good at algebra but just couldn't handle the word problems or logic that comes with chemistry. This semester has made me rethink that notion. I work at a small state university with a low bar for admission. The general chemistry classes are populated with all majors, some college ready and some not. For most of the students in my classes, general chemistry I is a check box to be ticked. That being said, I've noticed some alarming trends. A few years ago our department tightened up our math prerequisites for admission into general chemistry I. We only admit students if they score high enough on the ACT or SAT to be admitted to the precalculus class or have passed college algebra with a "C" or better. The remarks below concern students who have met this requirement. I recently tutored a student who had a poor score on the second hour exam. One of the problems was a titration with sulfuric acid. I was trying to explain that sulfuric acid was the acid made from the sulfate anion. After a while, we got to this point: how many protons must one add to the sulfate ion to produce a neutral species. The student drew a blank, so I thought it would be helpful to write out the equation: X + -2 = 0 It turned out that, not only was the solution not transparent to the student, the student could not solve this equation. Their approach was to guess until I told them the answer was correct. I cut them off after they guessed the correct answer so I don't know, if left alone, they would have eventually realized that "2" would have done the trick. Same student, different problem. The exam question asked for the oxidation number of carbon in the carbonate ion. The carbonate ion was written as CO 3 2- . After a bit, we got to the point of realizing that the oxidation number of the carbon had to add to the combined oxidation number of the oxygens to give the charge on the ion. This drew a blank look. So I wrote on the board: X + -6 = -2 No luck here, either. The student's first guess was -8. It did get better from there, but the underlying process was "guess until Dr. Osterhout says it's right." To do a quick assessment of the class's math skills I gave a first day quiz this semester that included some math problems to be worked without a calculator (you can see the quiz and the results on the worksheet page of my blog, johnosterhout.com). Here is my favorite: a = b/c, solve for c. In the Fall of 2016, 59% of the students correctly solved the problem. Sadly, this Fall the number was 47%. It does not bode well for your future in chemistry if you are in the 53% that can't do this little bit of algebra. Here is one designed to see if they know anything about manipulating numbers in scientific notion. Remember, they could not use a calculator for this one. 3.0 x 10 4 x 4.0 x 10 3 = This garnered 75% and 66% in Fall of 2016 and 2017 respectively. I was a little surprised that the results were so favorable. But then there was this: 2.0x10 6 x 4.0x10 4 / 8.0x10 -3 That one was 18% in 2016 and 14% in 2017. The students don't fare much better if they use their calculators. Even at the end of the semester, I have students who still use the 10 x key on their calculator to enter numbers in scientific notion. I also find that students have blithely ignored my exhortations to use the SCI option on their calculators and read, for instance, 6.43 x 10 -8 instead of 0.000000064 on their displays. Recently we were doing calorimetry. In one variety of problems the students are asked to find the final temperature after, say, hot water is added to an iron pot. The equations encountered were of the following variety. g x c s x (T f - T i ) = -g x c s x (T f - T i ) The students had to solve for Tf. They gathered up the appropriate numbers and happily plugged and chugged until: 1021(T f - 25) = -3138(T f - 95) (I left out the units, because I'm illustrating the math for you.) At this point four out of eight students in the tutorial session were unable to distribute the numbers into the parentheses. I fear that it is much worse in the class in general, because the only students coming to the tutorial had a least a marginal grasp on the material. The ones that really needed to come, didn't. Once we got over that hurdle, we arrived at: 1021T f - 25530 = -3138T f + 298000 Here again, half of the students couldn't proceed. In deference to the student in the first paragraph, it isn't necessarily "that chemistry algebra," sometimes it is just plain old algebra (and maybe just some sixth grade arithmetic). Keep in mind that all of these students had either passed college algebra or had a 600 or greater on the math portion of the SAT. So, what's a mother to do? Currently our general chemistry professors build math and calculator exercises into their homework and class materials. Clearly it is not enough. Our department has discussed developing a chemistry tutorial that would meet one hour a week to do remedial math and chemistry. We have experienced push back from the administration because they fear this would diminish our enrolment capacity ($). However, it would likely improve retention ($$). Any ideas?
... View more
Labels
-
Chemistry
-
General Chemistry
0
1
5,572


Macmillan Employee
08-30-2017
01:37 PM
Macmillan Learning is proud to announce that The Flipped Learning Global Initiative has named Introductory Chemistry author Kevin Revell one of the top 40 Flipped Learning educators worldwide. The list, compiled annually by the FLGI executive committee, names the top 100 K-12 educators from around the world who are identified as driving forces of flipped classroom adoptions. This year, the initiative broadened their recognition to include the top 40 Flipped Learning leaders in higher education. FLGI’s Chief Academic Officer, Jon Bergmann, stated, "The 2017 FLGI Flipped Learning Leaders lists includes some of the most experienced, innovative and proactive education and training professionals in the world. These are the people driving Flipped Learning forward in thought and action and demonstrating what is possible when Flipped Learning is done well." Congratulations, Kevin!
... View more
Labels
-
Chemistry
-
General Chemistry
-
Intro & Prep Chemistry
-
Organic Chemistry
0
0
2,492


Member
05-03-2017
04:13 AM
It is clear from our posts that there are many ways to flip a chemistry classroom. I'd be very interested to survey the flipping styles of our community. Here are some questions you could answer: General Have you flipped all of the General Chemistry at your institution or do only certain professors flip? Videos Do you use videos? Did you make the videos in house or do you get them externally? Are the videos lecture-like or topic oriented, short videos (6-10 min)? Do you require the students to view the videos? If so, how do you monitor? Textbook Do you use a textbook? If so, which one? Why did you pick this textbook? Do you make daily (weekly, chapter-based) reading assignments? Do the students have the option of using an electronic textbook? If so, what percentage use the ebook? Quizzes Do you give quizzes? If so what is the frequency: daily, weekly, pop, after chapters? In-class activities What is your typical class size? What sort of in-class activities do you use? Do the students work in groups? Do you grade the activities? Does everyone in the group get the same grade? Do you use transponders or cell phone responders (such as Top Hat)? Do you have TAs or student helpers in the classroom? If so, what is the ratio of students to (helpers + professors)? If you use TAs or student helpers, do they receive special training? Homework Do you use online homework? If so, what is the frequency of the assignments (daily, weekly, chapter-based, or other)? What percentage of the final grade is the homework? If you don't use online homework, describe your homework practices. Other Do you do anything else that you consider important to the success of your flip? If you have not already written a post describing your flip, please consider doing so. Or, you could answer the questions above and send them to me at JohnOsterhout<at>JohnOsterhout<dot>com and I'll consolidate the responses and post the results. OK, I'll go first. General The style of the classroom is left up to the professors. In the Fall, I'm the only professor flipping. In the Spring, another professor uses my materials and flips as well. Videos I have not made my own videos. I use the ChemTours in the Smartwork system that we use for online homework. I also look for suitable videos on the internet to supplement the ChemTours or to fill gaps in the ChemTour coverage. I often use Khan Academy videos or random videos from the internet. Sometimes, students suggest a video and I will incorporate it into my worksheets if it is better than the one I have. I do not require video viewing. Textbook Our textbook is Chemistry, Fourth Edition (Fifth edition next year), by Gilbert, Kirss, Foster, and Davies (Norton). Our faculty picked it because the content was acceptable and the price was lower than most of the other textbooks. I make daily reading assignments from the textbook. The students have the option of using an electronic textbook only. About fifty percent of the students have opted to use the ebook only. Unfortunately, most of these have only their cell phones to access the book in class. A few students bring laptops. Quizzes I give daily quizzes that count for ten percent of the final grade. I give the students an assignment sheet that includes the day's learning objectives. The quiz comes from the learning objectives. I use the quiz to encourage the students to make at least a minimal effort to engage the material before class. In-Class Activities My class size is about 30. I don't have TAs or student helpers so the student to me ratio is about 30 at the beginning of the semester. My students work in groups of four unless I am forced to make groups of three. At the beginning of class, I assign the groups by major and consolidate them as students drop out. I use worksheets that I have developed myself. These are available to teaching professionals. The worksheets are a series of problems that require the student to practice the learning objectives. The problems are more involved than the quiz problems. If the students finish the worksheet in class and it all the answers are correct, then they can leave. If they do not finish, they have to turn the worksheet in completed at the beginning of the next class. I has to be perfect. I post the keys so at worst the students copy the key onto the worksheet. At best, they engage the material. Some do, because they report mistakes in the key. Homework I use the SmartWork online system from Norton. I give daily assignments. The assignments cover the assigned reading & learning objectives for the day and one or more questions from the previous day's material. The homework counts for twenty percent of the grade. General My flipped class is designed to put the ideas through their heads several times: the reading, the homework, the quiz, the worksheet, and the follow-up homework. I look forward to hearing from you. In the meantime, Happy Flipping!
... View more
Labels
-
Chemistry
-
General Chemistry
0
1
3,120


Member
05-02-2017
08:08 AM
What made you think that it might be a good idea to abandon hundreds years of lecturing tradition and do something different? I would like to develop a post about why you, the members of our group, first decided to flip, how you took the first steps in flipping, and how your flip has developed. As a beginning, I offer my story. When I moved to Angelo State University, I was assigned to teach both General Chemistry and Non-majors Chemistry in my first semester. I am a biochemist and was previously teaching Biochemistry and the honors section of Biochemistry to juniors and seniors at the University of Arizona. ASU hired a young biochemist at the same time as they hired me to be department head so she got the biochemistry assignment and I got the freshmen. This freshman thing was new to me. The best that can be said of my first semester was that I survived. After that, I concentrated on General Chemistry and started to seriously consider how to improve my Gen Chem teaching. I always considered myself a bit of a ham and thought I could pull off this lecturing thing as well as anyone. However, the performance of my sections was low to middle based on student performance on the American Chemical Society final exams. How to improve? The idea of flipping was first instilled from articles in Higher Education and the Chronicle of Higher Education. I read with interest about the successes of active learning and the improvement of student learning when the students did the homework in class and watched the lectures at home. I decided to dip a toe into flipping. I was at ground zero: no video lectures, no classroom materials, no online support, no TAs, and no one else flipping at the university. I was teaching a Tuesday-Thursday section of Gen Chem and so had over and hour to work with. I decided to do a half-lecture then pass out an open-book worksheet. The fateful day came. My first day of (sort-of) flipping. I was nervous. I explained to the class what we were going to do. The students were skeptical. I gave my lecture; business as usual. Then I passed out the worksheet. There was an ominous pause while the students came to grips. Then the first question.... The first question was about how to work number one. The first problem concerned the first thing that was in the reading assignment. It was also the first thing I covered in my lecture. To add insult to injury, the student had his book open on his desk and key word concerning the first problem was in bold at the top of the first page. The writing was on the wall. I resolved right then to change the way I was doing things. I had suspected it before, but this confirmed two of my suspicions: 1) the students din't do the reading so they came to class completely unprepared (but you knew this) and 2) the students were too busy trying to write down everything I said to actually assimilate any knowledge. What to do? I resolved to completely flip the following Fall semester. The next year I used online homework to try to enforce engagement with the material before they came to class. I assigned online homework every day. I tried to find the simplest problems so the students would be getting an introduction to the material. This didn't result in their actually reading the book, but I knew from overheard conversations that they resorted to the book or the internet to find out how to solve the homework problems. I developed worksheets for each class, but that first year I didn't have any video component whatsoever. The class averages jumped up by about a letter grade. My sections started to show up 1&2 or 2&3 (out of 6-7, depending on the semester) on the exams. In subsequent semesters, I added the daily quiz, I incorporated video help into the worksheets, and I modified the homework to include follow-up problems after class. I am still refining. I describe how I run my class on a page on my website. The worksheets are available for download (free) to teaching professionals. I want to hear from you. I would like to hear your story and see how you developed your flip. I'd like to consolidate the stories for a later post or encourage you post your own story. Contact me at JohnOsterhout<at>JohnOsterhout<dot>com or look me up on the Angelo State University web page and email me there. Happy Flipping!
... View more
Labels
-
Chemistry
-
General Chemistry
0
0
1,567

bktenn
Migrated Account
03-06-2017
11:00 AM
Instructors (at all levels) have devised means of content transfer which do not involve the primary course texts as a response to student's seeming unwillingness to tackle, or inability to comprehend, the text. Over the years, many instructors developed a detailed set of class notes, presentation slides, videos, etc. that cover all of the important topics in the course. My teaching philosophy was very similar. Early in my teaching career, I required readings, but when I realized that students were consistently not comprehending, I didn't know where or how to deal with the problem, so I decided to work around the text, essentially reducing the 1000 page text into a collection of end of chapter problems. I didn't understand the reason why reading was so difficult nor did I have the tools to teach reading in my classroom. Moreover, I didn't think it even appropriate to be teaching reading in college level chemistry and math courses – shouldn't the students have already learned how to read? This semester I was introduced to a framework – not a program - through which reading is given high priority in the classroom and the instructor is given concrete tools to help students become proficient discipline readers. The framework is called Reading Apprenticeship (RA) [1]. In RA, the instructor is the content expert, who is capable of reading discipline texts. The instructor's role in RA is to provide a safe, collaborative environment in which students can be apprenticed to become proficient readers. In this framework the instructor demonstrates all of the techniques they use when reading. RA gives instructors concrete exercises and terms by which they can describe their reading and thought processes. The metacognitive discussion that arises through each of the dimensions listed below helps students develop into their thought processes to become readers. RA recognizes that reading is a very involved process that involves several distinct dimensions. The dimensions of RA include (link to graphic😞 Social - Students help each other comprehend texts by sharing and observing each other's reading processes Personal - Students develop their identity as a reader Cognitive - Students learn problem solving strategies applicable to reading comprehension Knowledge-building - Gaining knowledge about the discipline through reading, linking with previous knowledge I have been incorporating RA practices into my chemistry and math classes this semester and am very pleased with the results. Students are able to break down complex sections of the textbook in preparation for class. Moreover, students are able to apply RA concepts to problem solving because the first step in problem solving is being able comprehend the problem. As the semester progresses, I will write up examples of the RA strategies that I am employing in my courses and discuss how students responded. References: [1] Schoenbach, Ruth, Cynthia Greenleaf, and Lynn Murphy. Reading for Understanding: How Reading Apprenticeship Improves Disciplinary Learning in Secondary and College Classrooms. San Francisco: Jossey-Bass, 2012.
... View more
Labels
-
Chemistry
-
General Chemistry
-
Intro & Prep Chemistry
-
Organic Chemistry
3
0
2,890


Member
11-16-2016
06:24 PM
[originally posted fall 2014] About one year ago, I heard Gabriela Weaver present the results of a detailed study on the use of the flipped classroom in the majors chemistry course at Purdue. The course had been taught in the traditional format in fall, moving to the flipped format in spring with a different instructor, and the results overall were impressive. Her excellent seminar left me with two thoughts – first, that we should implement the flipped class at Marquette, and second, that it would be possible (and seemed best) to test the efficacy of the flipped class in a side-by-side comparison of lecture and flipped courses in our General Chemistry program. Thus began what I call the Flipped Classroom Project at Marquette. And so, in spring 2015 I will be teaching two sections of our General Chemistry 2 course, one in a traditional format (to some 200 students at 8 am) and a second in a flipped format (to around 120 students). The students will be given common exams, and while students are self-selecting into the courses as I write, all of the entering students will have taken the first-semester ACS exam, therefore benchmarking their entry point. Already there is a bit of a “buzz” around the flipped class, as I piloted this concept in our off-semester Gen Chem 2 course (around 70 students) this fall, and the two courses seem about equal in popularity in early enrollment. In upcoming posts I will share my experiences this semester, and what I’ve learned in implementing the flipped classroom concept. I would be thrilled to hear your suggestions on ways to implement this project so that the most meaningful data can be obtained, and any questions you might have. Thanks for reading!
... View more
Labels
-
Case Studies
-
Chemistry
-
General Chemistry
0
0
949


Author
11-16-2016
06:24 PM
[originally published 11/20/2015] [Originally published November 20, 2015] For the past year, we've been following the flipped classroom project at Marquette. The study used parallel classes taught by the same instructor, with students self-selecting into the traditional or flipped sections. The results of this study are now available electronically on the JCE site: http://pubs.acs.org/doi/abs/10.1021/acs.jchemed.5b00717 Their study showed very little difference in higher-level students, but a marked decrease in the DFW rates between the two classes. This seems consistent with other studies as well as personal observation: Some students can perform well in chemistry no matter how the course is taught, but lower-level students benefit most profoundly from structured, active-learning environments. Abstract Despite much recent interest in the flipped classroom, quantitative studies are slowly emerging, particularly in the sciences. We report a year-long parallel controlled study of the flipped classroom in a second-term general chemistry course. The flipped course was piloted in the off-semester course in Fall 2014, and the availability of the flipped section in Spring 2015 was broadly advertised prior to registration. Students self-selected into the control and flipped sections, which were taught in parallel by the same instructor; initial populations were 206 in the control section, 117 in the flipped. As a pretest, we used the ACS first-term general chemistry exam (form 2005), given as the final exam across all sections of the first-term course. Analysis of pretest scores, student percentile rankings in the first-term course, and population demographics indicated very similar populations in the two sections. The course designs required comparable student effort, and five common exams were administered, including as a final the ACS second-term general chemistry exam (form 2010). Exam items were validated using classical test theory and Rasch analysis. We find that exam performance in the two sections is statistically different only for the bottom third, as measured by pretest score or percentile rank; here improvement was seen in the flipped class across all five exams. Following this trend was a significant (56%) decrease in DFW percentage (Ds, Fs, withdrawals) in the flipped courses as compared with the control. While both courses incorporated online homework/assessments, the correlation of this indicator with exam performance was stronger in the flipped section, particularly among the bottom demographic. We reflect on the origin and implication of these trends, using data also from student evaluations. Congratulations to Michael Ryan and Scott Reid on the completion of this study.
... View more
Labels
-
Case Studies
-
Chemistry
-
General Chemistry
0
0
909


Member
11-16-2016
06:24 PM
[Originally published by John Osterhout on August 17, 2015] I polled the students in my flipped General Chemistry II class to see what they found useful for their studies. At the beginning of the Spring 2015 semester, we made a list of things they could do to help themselves learn chemistry. At the end of the semester I asked them to rate the things that we discussed. Here are some of the results. This post is a follow up to my earlier post The Flipped Classroom: To Video or Not to Video. My Flipped Class After a class, I post a handout on Blackboard that contains the reading assignments and the learning objectives for the next class. The handout also contains a brief introduction (which few student read) and a list of vocabulary words. When I can find appropriate content, I provide links to videos. The videos that I have used include ChemTours (Norton), ThinkWell videos (Cengage) and Khan Academy videos (more about the videos later). Online homework covering the material in the reading assignment is due the night before each class. I assign on average about six problems, although the number varies depending upon the material. In class, the first exercise is a quiz that has five questions about the assigned material, two questions over the previous day's material and a bonus question that is extra credit. The students have been told that the first quiz question covers the first learning objective and so on down the list. The quizzes consist of the simplest possible questions that relate to the day's learning objectives. The role of the quiz is mostly to see if the students made any effort to internalize the learning objectives. The students work in groups of four for the quizzes and I observe that this engenders some lively discussions. After the quiz, I give the students a worksheet that contains more complicated problems. The worksheet is also done in groups of four. I spend the class time walking around the classroom helping the groups as requested. I post the answers to the quiz and worksheet questions on Blackboard. These became available a few minutes after the end of class. The next homework assignment contains problems from the previous class's material and from the new material for the next class. All of the sections of General Chemistry take group exams so the students are tested over the material on the same day using the same exam. The Poll Since there were no lectures or required video lectures, the emphasis was on the learning objectives. I tried to make it clear to the students in the beginning that it was up to them to figure out how to learn. At the beginning of the class, we listed off a set of resources that the student had at their disposal. The poll concerns which of these that the students used and which were useful. The question on the poll was: What did you do to help yourself? I asked them to rate each of the resources that we had discussed. There were five possible answers for each resource: A = Did not use, score = 0, B = Not useful, score = 1, C = A little useful, score = 2, D = Moderately useful, score = 3, and E = Most useful, score = 4. The average score = (0*A+1*B+2*C+3*D+4*E)/100. Forty-one students from my two sections of General Chemistry II took the poll. Not all of the students who were registered in the two classes took the poll. The Answers Rank Resources Score Use by Students(%) 1 Worksheets & keys 3.8 100 2 Daily quizzes 3.3 100 3 Study with other students 2.8 90 4 Internet 2.8 98 5 Online homework 2.7 100 6 Hard copy textbook 2.3 88 7 Chem tours 2.0 80 8 ACS Study Guide 1.8 59 9 Kahn Academy videos 1.8 71 10 Evening tutorial sessions 1.8 63 11 Self-identified videos 1.4 56 12 Office hours 1.4 49 13 Training Center 1.2 44 14 UC Davis Wiki 1.2 49 15 Thinkwell Videos 1.1 46 16 Online textbook 1.0 49 17 Office appointments 0.9 34 Notes on the resources: “Internet” was not further defined – it was meant as a catch-all for things internet but presumably not the tools named directly, such as Khan Academy Videos. The online homework was delivered the SmartWorks system from Norton. The textbook was Chemistry: The Science in Context, 4th Edition, Gilbert, Kirss, Foster, Daves, W. W. Norton & Compan, New York/London. The online textbook was delivered though the SmartWorks login. ChemTours were short (less than 10 minutes usually) animated tutorials on chemical topics assessed through the SmartWorks system. ThinkWell videos are longer, lecture-like videos from Cengage. Khan Academy videos were either assigned or found by the students. I gave two tutorial sessions per week for one hour from 5 pm to 6 pm on Monday and Wednesday and had four scheduled office hours 1-2 pm (before the chem labs) on Monday through Thursday. Office appointments were tutoring outside my regular office hours scheduled in advance by the students. The UC Davis ChemWiki was listed in the beginning as a resource. The Tutoring Center is run by Angelo State University, and usually has a chemistry tutor present. The Fate of Videos In my previous post, I asked “Do the students need to have knowledge spoken to them in order to learn?” During the Spring semester the students could use four different types of videos: ThinkWell, ChemTours, Khan Academy and other, self-identified videos. The videos were far down in the rankings: ChemTours (7th), Khan academy (9th), Self-identified (11th), and ThinkWell (15th). There seems to be a correlation here with length: the ChemTours were the shortest, the Khan Academy generally longer and the ThinkWell videos were forty-five minutes plus, covered big chunks of content, and were made to replace classroom lectures, which they strongly resembled. In talking with colleagues, I find that they echo this result: students won't willingly watch long videos outside class. In the beginning of my flipping experiments, my students complained bitterly that I didn't lecture. When provided with lecture-like videos, they won't use them. The Most Useful – The Top Six Worksheets and Keys. I posted the keys to the daily worksheets immediately after the class ended. The keys provided examples of five or six worked out problems per day for the students. Many students made notebooks of the keys, some simply corrected their own worksheets. Daily quizzes. The keys for these were posted along with those for the worksheets. These also provided sources of problems to study. Study with other students. I meant this to mean “out of class” study with other students but many may have construed this as “group work in class” as well. Next time I'll make the choices more explicit. Internet. Where would we be without the internet? I know from talking with the students that they used the internet to search for solutions for their online homework, for explanations of the learning objectives, and for clarification of the textbook. Online homework. Talking to the students, you would think that the online homework was the work of the devil. Then it winds up in the top five—go figure. I use the homework to trap the students into engaging the material before they have the quizzes and worksheets in class. If nothing else, they must do some kind of preparation in order to be able to do the homework problems. The hard-copy textbook. Most of the students bought a hard-copy book. They all had access to the ebook through their online homework system. I was pleased to see that the textbook scored as highly as it did. As time stumbles on, I feel that the students are becoming less capable of or at least less willing to use books as learning tool. The Least Useful – The Bottom Five The tutoring center. I was surprised that the utilization of the tutoring center (44%) was as high as it was, but a utilization of 44% had the effect of lowering the score, since "did not use" = 0 score. The UC Davis Chem Wiki. The students had a hard time navigating the wiki. They couldn't find the appropriate information by searching the wiki and when they did, the answers were too involved or the nomenclature was too different from the textbook to be useful. ThinkWell videos. As a professor, I think these are great. The students, not so much. The knock on these videos is that they are too long (45 minutes plus). Why forgo lectures in a flipped classroom if you just have to sit through them outside class? Online textbook. About four students brought laptops to class and used the online textbook in class. The rest brought or shared a hard copy book. There were a few students who tried to use their cell phones to access their textbooks, which proved difficult since the screen is so small and since I outlaw cell phone use in class. The big loser, office appointments. Two students used office appointments regularly because my regular office hours conflicted with their classes. The others would mainly drift in before the exams for a quick tune-up. Note on office hours in general: only one male came to my office hours during the entire semester. This has been my experience over a number of years and seems to the be the experience of others as well. The ratio of women to men in my evening tutorials was about 6:1. Moving Forward I can correlate these data with the grades and with scores on the American Chemical Society final exams. I am sorting through the data now. I can tell you this: there is not a simple correlation between the number of resources used and the final grade. I will look at what the A and B students found useful and compare that to the student will lower grades. I'll let you know how it turns out.
... View more
Labels
-
Case Studies
-
Chemistry
-
General Chemistry
-
Tech
0
0
1,472

katherine_hayde
Migrated Account
11-16-2016
06:24 PM
If you have been following along with me during my flipping journey, then you are aware of a study in which two colleagues (Dr. Melanie Styers and Dr. Pete Van Zandt) and I wanted to assess whether or not flipped teaching promoted critical thinking within our students... but instead of me writing about it, we thought, in good flipped teaching manner, we would make some short videos to describe our project.. here is video one which describes who we are, and why we think critical thinking is important: Video Link : 1824
... View more
Labels
-
Chemistry
-
General Chemistry
0
0
1,047
Topics
-
Biochemistry
7 -
Biology
14 -
Case Studies
14 -
Chemistry
103 -
Environmental Science
6 -
General Chemistry
16 -
Genetics
1 -
Intro & Prep Chemistry
8 -
Math & Stats
13 -
Organic Chemistry
9 -
Physics
5 -
Tech
16 -
Virtual Learning
5
Popular Posts
Low Tech Student Engagement Tools

bktenn
Migrated Account
3
0
Developing Grit

bktenn
Migrated Account
3
1
Reading in Chemistry: Part 1

bktenn
Migrated Account
3
0