-
About
Our Story
back- Our Mission
- Our Leadership
- Accessibility
- Careers
- Diversity, Equity, Inclusion
- Learning Science
- Sustainability
Our Solutions
back
-
Community
Community
back- Newsroom
- Discussions
- Webinars on Demand
- Digital Community
- The Institute at Macmillan Learning
- English Community
- Psychology Community
- History Community
- Communication Community
- College Success Community
- Economics Community
- Institutional Solutions Community
- Nutrition Community
- Lab Solutions Community
- STEM Community
- Newsroom
- Macmillan Community
- :
- STEM Community
- :
- STEM Blog
STEM Blog
Options
- Mark all as New
- Mark all as Read
- Float this item to the top
- Subscribe
- Bookmark
- Subscribe to RSS Feed
STEM Blog
Showing articles with label Physics.
Show all articles
LeahChristians
Macmillan Employee
06-29-2023
09:34 AM
The best content in FlipIt Physics is now available in Achieve!
Looking for the content from FlipIt in your Achieve course (calc-based physics)? Follow these instructions:
First, if you haven’t already, create your Achieve course. [achieve.macmillanlearning.com]
Click the blue “Create a New Course” button at the top righthand corner in Achieve.
Select “OpenStax, University Physics with Prelectures” from the list of courses.
Choose between an individual course or a section manager.
And then click Next: Course Set-up.
Enter your course details.
And then click Next: Create Course.
Either start with a pre-built course (aligned to the OpenStax table of contents) or build from scratch by Browsing the library of content.
Ed. note: I recommend starting from the pre-built course and then deleting/reorganizing rather than adding everything from a blank course, but just my two cents!
Whichever route you choose, you can find the content you’re familiar with from FlipIt in the Resources tab on the lefthand panel. (looks like a file folder)
Within the Resources folder, you can find the following categories of content migrated from FlipIt and add it to your course:
Prelecture video assignments → Search “prelecture”
Bridge assignments (fka Checkpoints) → Search “bridge”
Homework assignments from FlipIt (fka Standard Exercises) → Search “scaffolded”
There’s also a ton of new content and functionality for you to browse, including Achieve’s large question library, Goal-Setting and Reflection Surveys, and iClicker integration.
Need help? We’re here for you!
Schedule a 1:1 demo / training https://go.oncehub.com/achievedemos
Contact your local rep
Pricing and ISBNs [Student Store page here]
Request an extension for Fall 2023 E&M courses
Don’t know who your rep is? Find them at macmillanlearning.com/findmyrep
... View more
Labels
-
Physics
0
0
909
Elizabet
Macmillan Employee
01-12-2022
08:29 AM
Research experience is essential for the ongoing education of many students. As an instructor, you may have developed research tasks, implemented them into your course, and sought supporting personnel to ensure your students learn the essentials. CUREs, or course-based undergraduate research experiences, provide undergraduates a form of apprenticeship-style research experience.
Dolan and Weaver’s A Guide to Course-based Undergraduate Research offers guidance and some of the best practices on how to provide research experiences outside of the lab. One of the first things to take into account when planning to implement a CURE, is that students bring with them certain types of background knowledge and skills, and have different areas of knowledge that need to be developed. Knowing about your students skill levels should help guide the structure of the CURE, including which instruments and materials will be needed, which sections of the project will be “practice” versus novel exploration, and how much time will be devoted to each aspect of the experience.
If you would prefer to adapt an existing CURE, you can choose to do so separately from other instructors who teach that CURE, or you can join a group of users implementing the CURE at multiple other institutions.
Consider these existing programs:
Freshman Research Initiative (FRI) at the University of Texas at Austin: https://cns.utexas.edu/fri
Science Education Alliance-Phage Hunters program (SEA-PHAGES): https://seaphages.org/
How do you introduce research experiences in your course?
To learn more about developing and implementing CUREs, get your copy of A Guide to Course-based Undergraduate Research today!
... View more
Elizabet
Macmillan Employee
12-13-2021
03:10 PM
As winter break approaches and students prepare for final exams and projects, instructors are busy writing and grading those finals and discovering how well students actually understood the material. With the mix of available virtual and in-person courses, the consideration of different types of assessments becomes very complex.
Courses in STEM disciplines often cover a large amount of material that tends to encourage superficial learning instead of the more ideal deep approach to learning. Additionally, STEM courses seem to have a threatening and anxiety-provoking assessment system.
Summative assessment is the assessment of student learning; it is usually an exam, final project or report that provides a score on that student’s performance but rarely offers timely or effective feedback. But these final exams and evaluations are inherently necessary in the framework of our education system. What remains is to learn how to use summative assessment as a learning tool. Consider the ideas in the table below for your own test-taking processes.
During the test
Collaborative test-taking
Pyramid exams
Immediate feedback assessment technique
Self-corrected exams
Prior to return of the test
Do-over
After the return of the test
Highlighting missed material
Point-recapture
Test analysis
How do you make use of summative assessments?
Explore the various types of assessments and strategies for their use in Assessment in the College Classroom.
... View more
Labels
0
0
1,050
Elizabet
Macmillan Employee
11-04-2021
11:45 AM
Designing Course-based Undergraduate Research Experiences (CUREs)
What is a CURE Class?
A Guide to Course-based Undergraduate Research highlights several key elements that make Course-based Undergraduate Research Experiences, or CUREs, distinctive. There are some design features that are inherent to all CURES but there are also those that depend on educational and personal goals. In order to implement a CURE and achieve program goals, it is important to strategically integrate the CURE into your course.
Goals & Considerations for Designing a CURE Class
There are different goals to consider when implementing a CURE. Some of the implementation insight from A Guide to Course-based Undergraduate Research is organized in the following table:
CURE’s Overarching Goal
Ideal Implementation
To allow students the opportunity to dabble in research and consider it as a potential career path
Early curriculum integration is recommended. Students are able to experience and learn more about different options and opportunities in research.
To improve student retention
Integrate the CURE in the curriculum prior to the point at which students leave.
To engage students in experiential learning
Integration can be done at any point in the curriculum.
The inherent similarity among CUREs is that they involve students in research that can produce actual discoveries relevant to the stakeholders. Students should also be involved with iterative work that includes troubleshooting, problem-solving and other aspects of research.
To learn more about developing and implementing CUREs, get your copy of A Guide to Course-based Undergraduate Research today!
... View more
Elizabet
Macmillan Employee
10-22-2021
11:34 AM
With a new school year underway, it is important to consider and anticipate some of the potential threats to a new research student’s success. Among those threats are stereotypes that can take hold, especially in STEM fields of study.
Stereotype threat is defined in Entering Research as “the psychological experience of anxiety about performing in a way that reinforces a negative stereotype about your group”. An important step to avoiding these stereotype threats is to understand the subtle cues that make negatively stereotyped groups feel anxious or undermined. When groups of students are triggered, they experience anxiety that leads them to underperform and subsequently reinforce those negative stereotypes, creating a harmful loop.
There are many stereotypes surrounding women, racial minorities and others in academia. One of the ways to protect these groups of people from stereotype threat is to build and develop self-efficacy beliefs. However, saying that students should simply have strong beliefs in their own abilities to perform does not make it a reality. So to mitigate the negative impact of stereotype threats, a more direct approach of educating students about these threats may be necessary. Being a good role model regardless of gender, race or sex; encouraging students to have a growth view of intelligence; explaining other reasons for test anxiety; providing activities that reaffirm the student’s abilities.
How do you support your students when stereotype threats arise?
Read more about stereotype threats and other ways to help your research mentees in Entering Research: A Curriculum to Support Undergraduate & Graduate Research Trainees.
... View more
Topics
-
Biochemistry
2 -
Biology
14 -
Case Studies
15 -
Chemistry
111 -
Environmental Science
4 -
General Chemistry
20 -
Genetics
1 -
Intro & Prep Chemistry
10 -
Math & Stats
15 -
Organic Chemistry
9 -
Physics
5 -
Tech
18 -
Virtual Learning
9
Popular Posts
Low Tech Student Engagement Tools
bktenn
Migrated Account
3
0
Developing Grit
bktenn
Migrated Account
3
1
Reading in Chemistry: Part 1
bktenn
Migrated Account
3
0