Keeping Students Engaged: Part 1

Macmillan Employee
Macmillan Employee
0 0 2,940

Keeping Students Engaged:

A Tale from Introductory Chemistry

(Part I)

by Kevin Revell, Ph.D.

Associate Professor of Chemistry and Consultant  · Sapling Learning

Just before the spring 2012 semester, I learned that I would be teaching the introductory chemistry class at Murray State University. I confess that I was less than thrilled with the assignment. It was two nights a week during my son’s basketball season, it was a large class that I had not taught in a long time, and it was largely freshman, with plenty of non-science majors meeting gen-ed requirements.   After teaching organic chemistry for so long, this was going to be an adventure.

To help things out, I decided to try a couple of new tools. For years, I had used a tablet PC in my lecture – posting skeletal notes before class, then fleshing out the concepts as we went through the class period. This semester, I decided to take this one step further and record the screen and audio for each lecture. And I wanted to use online homework. I had tried Sapling Learning in my organic course the semester before with terrific results. I was curious how this would translate to less-motivated students.

About four weeks into class, I began to notice a few unusual positives. First, in a room with a capacity of 144 students, there were almost no empty seats. Second, the students were doing WELL. Even in the second unit, I found that over 90% of the students were attempting the homework. This was not the high-attrition course I had expected.

Based on this, I decided to do a more systematic study: what was helping them succeed? How did the tablet-based lectures, the recorded lectures, and the online homework really contribute to student success? In order to investigate this, I began to correlate student performance with usage of the lecture-replay and online homework, and I administered a year-end survey to assess the student impressions of each tool. The full study was recently published in the Journal of Chemical Education, available here.

One of the biggest gains I saw was in the area of retention. In the previous five full-semester classes, the pass rate for this course was 71%. In my spring 2013 course, it jumped to 90%, with no significant change in the standardized test scores. Interestingly, the number of A’s didn’t change much. It turns out there are students who will work every problem, study aggressively, and get the A regardless of how the course is presented. The big jump was in the number of B’s and C’s earned. Based on these results, I believe that the combination of tools helped students stay more engaged, practice more, and earn a B instead of a C, or a C instead of a D.

And perhaps the most striking thing? Teaching introductory chemistry was an absolute blast. This semester, I actually asked to teach it again. I look forward to writing more on that in the weeks to come.